
OVIS 1.0.0 Users' Guide
August 24, 2006

J. Brandt, A. Gentile, P. Pebay, M. Wong
Sandia National Laboratories

Livermore, CA

Copyright (2006) Sandia Corporation. Under the terms of Contract
DEAC0494AL85000, there is a nonexclusive license for use of

this work by on or behalf of the U.S. Government.

This page intentionally left blank.

This page intentionally left blank.

Contents
1 Introduction . 5
2 Installation . 5

2.1 Instructions for compiling Qt 4.x.y for Linux . 5
2.2 Setting the environment . 6
2.3 Instructions for compiling Ovis 0.1 on Linux . 7
2.4 OVIS ancillary files . 7

3 Data Collection . 7
3.1 Data File Format . 8
3.2 Data Collection . 9

4 Operation Guide for Ovis-0.1 . 12
4.1 Description of menus and controls . 12
4.2 Cluster Definition and Representation . 13
4.3 Getting Data Into the Display . 14
4.4 The OVIS Display . 14
4.5 Customizing Color Scales . 15
4.6 Use Of Data Interpolation . 16

5 Tools . 16
5.1 Statistics . 16
5.2 Correlation . 17

6 Calibration Code . 17
7 Cluster Analysis . 17

7.1 Viewing Raw Data . 17
7.2 Viewing Probabalistic Outliers . 18

8 OVIS Tutorial . 19

4

OVIS User’s Guide

1 Introduction

This document describes OVIS: A tool for intelligent analysis and monitoring of large
computational clusters. Through an intuitive user-friendly GUI, OVIS provides 2D visu-
alization capabilities of cluster health parameters as well as a number of statistical tools
for analysis of real-time (monitoring) or stored (diagnostic) data. Moreover, owing to the
statistical similarity and the large number of nodes in a cluster, the user can examine the
health of each individual node using the statistics tools provided with OVIS together with
the ability to bin variable values by color. This allows at-a-glance detection of abnormali-
ties in a system or node depending on how the user has tuned the interface. Furthermore,
the correlation engine provided with the distribution allows the user to analyze statistical
relationships between different parameters of the system. Knowledge of these relationships
can then greatly reduce the parameter space that the user needs to actively monitor in order
to detect abnormal node behavior.

This is in contrast to current cluster monitoring methodologies in which data is obtained
from each node and a pre-defined rule set is applied, on a per-node basis, to any node whose
value(s) cross a pre-determined threshold(s). Though this methodology is well suited to sin-
gle nodes and small clusters, OVIS uses the statistical properties of these large collections
of statistically similar devices to add a great deal of intelligence to the process of monitor-
ing and analysis as well as being able to determine many problems sooner than is possible
using static thresholds.

2 Installation

2.1 Instructions for compiling Qt 4.x.y for Linux

Download the latest version of the Qt 4.x.y source from:
http://www.trolltech.com/developer/downloads/qt/x11
Select qt-x11-opensource-src-4.x.y.tar.gz under ”Download from ftp.trolltech.com”

Move the tar file to an appropriately named directory e.g. ∼/qt:
mkdir ∼/qt
mv < path to f ile >/qt-x11-opensource-src-4.x.y.tar.gz ∼/qt

Untar the qt-x11-opensource-src-4.x.y.tar.gz file:

5

cd ∼/qt
tar xvfz qt-x11-opensource-src-4.x.y.tar.gz

Generate a Makefile:

Move to the source directory
cd qt-x11-opensource-src-4.x.y

If you are building this in your home directory
./configure -prefix ∼/qt/qt-x11-opensource-src-4.x.y
This will put bin, lib, doc, etc. in ∼/qt/qt-x11-opensource-src-4.x.y

If you are building this as a system resource
./configure (This will put bin, lib, doc, etc. in /usr/local/Trolltech/Qt-4.x.y)

Compile and install Qt 4.x.y according to the instructions given when configure com-
pletes. Note: You must have root privileges if this is a system build

2.2 Setting the environment

Set $QTDIR to the directory to which you have installed Qt. The default Qt 4.x.y installa-
tion directory is /usr/local/Trolltech/Qt-4.x.y.

In the default case:

If you are using tcsh, do the following:
setenv QTDIR /usr/local/Trolltech/Qt-4.x.y

If you are using bash, do the following:
export QTDIR=/usr/local/Trolltech/Qt-4.x.y

In the case you installed into ∼/qt/qt-x11-opensource-src-4.x.y:

If you are using tcsh, do the following:
setenv QTDIR ∼/qt/qt-x11-opensource-src-4.x.y

If you are using bash, do the following:
export QTDIR=∼/qt/qt-x11-opensource-src-4.x.y

Add $QTDIR/bin to your system path.

If you are using tcsh, do the following:
set PATH=($QTDIR/bin $PATH)

If you are using bash, do the following:
export PATH=$QTDIR/bin:$PATH

6

Note: Make sure that $QTDIR/bin comes first, to make sure that you are not using
the built-in Qt executables, which may be the incorrect version of Qt.

2.3 Instructions for compiling Ovis 0.1 on Linux

If you havent already done so, compile Qt 4.x.y for Linux. See ”Instructions for compil-
ing Qt 4.x.y for Linux”

Untar the OVIS 0.1 source:
tar xvfz ovis-0.1-src.tgz

Move to the ”src” directory:
cd ovis-0.1/src

Generate the Makefile using qmake:
qmake

Compile OVIS 0.1:
make

Launch OVIS
./Ovis

2.4 OVIS ancillary files

The ancillary files needed for meaningful display by OVIS are:

1) An XML description of the geometry of the machine being analysed
This should reside in the ovis-0.1/geometries directory to be seen using the default configu-
ration but can reside anywhere and be defined on the General tab in the Edit−−>Preferences
pull down menu.

2) Data from the machine in OVIS format for display and analysis
The directory in which this data resides needs to be specified on the General tab in the
Edit−−>Preferences pull down menu.

3 Data Collection

OVIS 0.1 reads its data from files in the Ovis data format. Data collection mechanisms
are not part of OVIS. For convenience, however, we do include in the OVIS release a few

7

example scripts of how data can be obtained from typical sources and written into the OVIS
data format. These scripts are stand-alone codes and do not interact with OVIS itself.

3.1 Data File Format

OVIS 0.1 reads its data from files in the Ovis data format. This requires that a data direc-
tory exist containing data files, one for each compute node of the cluster. While the data
directory can take any name, the data files must be named proc.<hostname>.out, for exam-
ple, ”proc.cn105.out” for hostname = cn105. Each data file consists of chronological lines,
one for each timestep, containing the data values for each quantity being monitored. The
quantities must be in the same order each time and the timestamp must be the first value in
the line. The identities of the quantities are specified in a single header file called ”header”
that resides in the data directory. The quantity specifying time must be called ”Time” and
its units are in seconds since the epoch; all other labels (and units) can be arbitrary and are
read in by OVIS when the data files are loaded.

For example:

> more header
Time CPU1 Temp CPU2 Temp FAN1 FAN2 RX TX

> more proc.cn105.out
1112340000 45 40 12 12 17 31
1112340002 45 45 12 12 13 22
1112340004 45 50 12 12 20 100
1112340005 45 54 12 20 100 100
1112340007 45 52 12 20 100 100

> more proc.cn106.out
1112340000 42 25 12 12 25 1000
1112340003 43 25 12 12 33 1000
1112340004 42 25 12 12 100 1000
1112340006 42 25 12 12 300 2000
1112340008 42 25 12 12 200 1000

The times do not have to be equally spaced, nor do times in different data files have to have
a one-to-one correspondence with each other.

Notes: - OVIS will be changing to a binary format, rather than ascii. A converter will be
supplied to convert between the two formats. - Currently, we keep sequential directories
holding the data files, e.g., main dir/0, main dir/1, etc. each having a set of data files
called proc.<hostname>.out. We are debating options for allowing for sequential (in time)
files all in the same dir, with a number extention on the file name, e.g., in main dir is
proc.<hostname>.out.0, proc.<hostname>.out.1 etc. In either case, there is currently no
mechanism for OVIS to auotmatically roll over form one file to the next one in the sequence,

8

however, we intened to support this in a future release. - The header file cannot have
extraneous whitespace and must have single space delimeters. Tabs are not recognized.
This will be fixed in a future release. - The data files must use single space whitespace as a
delimeter, and extra single space whitespace is allowed. Tabs are not recognized. This will
be fixed in a future release.

3.2 Data Collection

It is up to the user to arrange for data collection and conversion to the OVIS data format.
Most systems have onboard senors and counters with a well known interface from which
the information can be obtained. For convenience we provide example scripts for some of
these formats that can be customized to fit your scenario. Currently we address reading
from /proc or hplog and reading from RRDs, such as those populated by Ganglia. Super-
mon and IPMI readers are in the works.

3.2.1 Reading from /proc, hplog etc

Summary: The gatherdata.c code reads and writes data for one node. It can be launched to
all nodes using a utility like pdsh or it can be started via cron. However it is launched, a
check should periodically be made to ensure that if it dies it is restarted.

Details: The gatherdata.c code gathers data for a single node on our Shasta Cluster. It is
customized for calls to 1) hplog to get CPU temperatures for the two processors and fan
speeds of the processor zone and the system board, 2) /proc to get user, system, and idle
utilizations for the two CPUs, and 3) ifconfig eth to get received and transmitted bytes.
The calls and the output of the calls are in a known format from which the data is extracted.
(Example output from the calls is given at the top of the files, so that one can understand the
parsing of the results). The script is run on each compute node. The collection frequency
is specified in the script.

The user should customize this code for his own data collecting interface and metrics of
interest. This code should probably have as small a footprint as possible so as not to
compete with the user processes on the nodes. Thus it is resonable to take advantage of
the known output formats of the data being collected.

3.2.2 Reading from Ganglia populated RRDs

Summary: ovis RRD reader reads and writes data for one node; ovis RRD launcher launches
ovis RRD readers, one for each node. ovis RRD killer can be used to kill ovis RRD readers.

Details: The ovis RRD XXX scripts work together to read from RRDs, such as those
populated by Ganglia, via the RRDtool perl interface (reference RRDtool). They do not

9

interact with Ganglia itself. The assumption is that there exists a main directory containing
subdirectories, one for each compute node. Within those subdirectories are the RRDs for
that node, one for each different variable to be monitored. Each RRD could have multiple
timescales being considered (e.g., for data taken on 5 second intervals, the RRD may con-
tain: 1 single datapoint AVERAGE, 2 minute AVERAGE, 10 minute AVERAGE, etc.), but
it must correspond to one quantity only (e.g., cpu1 temp). The rrd names are assumed to
be <variable>.rrd, e.g., cpu1 temp.rrd.

The ovis RRD reader will read from the RRDS for a single node. It will extract info from
the RRDS for that node, and determine for each RRD, what the minimum measurement
interval is (e.g., in the example above it will discern that the 1 datapoint average is the
shortest interval (taken on 5 second intervals). It will then compare across all the RRDS
and only collect data from those whose shortest interval corresponds to the global shortest
interval. For example, if 5 seconds is the shortest interval across all RRDs, then data will
only be collected from RRDs who have a quantity whose shortest interval is 5 seconds.
In theory, this could result in totally different things being collected (e.g., the 5 second
AVERAGE of cpu1 temp with data taken on one second intervals and the 5 second XXX
of fan speed with data being taken on 5 second intervals), but in practice one usually sets
up all the Ganglia RRDS with the same time granularity. Also there is no reason that any
two things have to be related. The only issue is if you might want a few different metrics
for the same quantity (e.g., the 1 minute AVERAGE and the 10 minute AVERAGE of fan
speed), however, there are so many special cases of this that the user sould just alter the
scripts to fit his special circumstances.

These readers produce the data files, and optionally the header file. If the header file is being
produced by the ovis RRD reader then it will check all possible RRDS for inclusion in the
set. If an existing headerfile is spcified on the command line, then only those quantities
will be considered for inclusion in the set.

Command line syntax for the ovis RRD reader:
Usage: ./ovis RRD reader.pl <parentcndir> <cndir> <outputdir> [options]
Required arguments:

<parentcndir> directory holding the directories of all the cn.
<cndir> the directory of the particular cn (relative to the parentcndir)
<outputdir> output directory

Options:
-t <starttime> <duration> starttime can be integer or relative to now i.e, now-

300 duration = 0 runs infinitely
-s <outputfilesize> outputfilesize, if no flag, defaults to infinite
-useheader if the useheader flag exists, it will use the headerfile called header in

the outputdir
-useparameters if the useparameter flag exists, it will use the queryparameterfile

called parameters.in in the outputdir

The parameter file contains optional values for parameters related to the data collection
algorithm. These provide constraints on how many timesteps the code will wait for new

10

data before moving on and how old data can be before it is considered stale. These are in
the getParams function, their defaults and roles are:

agewindow steps = 1 Values will be considered stale if the obtained time is older
than targettime - agewindow steps.

maxwait steps = 4 Longest amount of time after the target time we are willing to
wait for valid data. Otherwise, assume we will get nothing valid and move on....

leadtime steps = 2 How much ahead of the target time we will ask for, in order to
see if subsequent data has come in – in order to discover that a point may never come in

backlook steps = 3*agewindow steps; How much behind a target time we will ask
for to use as potential data

badval = -1; What will be written to the file in case no valid data for a rrd at a given
time is found

The ovis RRD launcher launches readers, one for each subdirectory of the main directory
- again, these correspond to compute nodes. One can specify subdirectories to include
or exclude in a file specified on the command line. See the code Usage for this. The
ovis RRD launcher coordinates the start times of all the ovis RRD readers, if a start time
is not specified. It can use a predefined header file, as mentioned, with respect to the
ovis RRD reader or it will create a header that is the union of all the subdirs rrd names.

If different compute nodes have different intervals, then the output files won’t have corre-
sponding times. In practice, this is usually not an issue as one typically coordinates the
setup of all the RRDS and the times are regular within the RRD (see RRD documentation
on how time is handled within an RRD).

Usage: ./ovis RRD launcher.pl <parentcndir> <outputdir> [options]
Required arguments:

<parentcndir> Directory holding the directories of all the cn’s.
<outputdir> Directory where the output will be written Options:

-t <starttime> <duration> Start time. starttime can be integer or relative to
current time i.e, <current time> - 300 duration = 0 runs infinitely

-s <outputfilesize> Output file size. If no flag, defaults to infinite
-useheader If the useheader flag exists, it will use the header file called header in

the output directory
-usesubdirs|nousesubdirs Specifies whether or not to use the nodes listed in the

file subdirs.in in the output directory

The ovis RRD launcher starts the ovis RRD readers each as a separate processes and then
exits itself. The ovis RRD killer script will kill all processes with ”ovis RRD reader” in
the name for ease of killing everything off.

NOTES: As mentioend earlier, the algorithmic parameters of the ovis RRD reader (e.g.,
agewindow steps) have defaults or can be specified in a parameter file. In the future these
values will be determined more intelligently by considering the usual frequency of updates,
etc. The exact methodology for doing this has yet to be determined.

11

4 Operation Guide for Ovis-0.1

4.1 Description of menus and controls

This subsection contains a comprehensive list of the menus and controls available via the
OVIS GUI.

File −−> Open Dataset – Specify the directory of a particular data set.
Exit – Exit OVIS

Edit −− > Preferences [General tab] – This is where the user specifies defaults for
geometry, data results and system types.

Preferences [Variable Scales tab] – This is where the user sets up the value
to color bindings.

View −− > Use Gradient Colormap – Interpolate between colors (bin if not checked).
(See ”Customizing Color Scales” section for more information.)

Interpolate Missing Data – If checked will pull last data point forward if new
data is not available for current time step. If not checked this case would result in no data
(gray) for this time step. (See ”Use Of Data Interpolation” section for more information.)

Tools −−> Statistics – Allows the selection of various statistical analysis packages

Time −−> Reset Time Boundaries – Reset time boundaries to beginning and end spec-
ified in the data files. Use this if user has re-defined boundaries and wants to go back to
whole file.

Help −−> About Ovis – Gives version

System: – Select system to display. The name(s) displayed in this combo box are the
<descriptive name> part of the <descriptive name>.geom.xml in the geometries directory.

Variable: – Variable name that is currently being displayed on the GUI. This comes from
the header file located in the data directory in which the variable names correspond posi-
tionally with data in the data files.

Speed: – This dial allows the user to adjust the rate at which stored data are being read from
data files. It’s extremes are zero delay (limit on the rate at which the display changes is only
limited by disk I/O and processing capacity) and 10 minutes between time steps. The dial
is log based with faster being in the clockwise direction and the default speed being one
second between time steps. This control allows the user to scroll quickly through data or
slowly examine the changes. The stop button can be used if one wants to spend even more
time on a particular time step. If the ”Sliding End” box is checked and the end of the data
file is reached, this dial will automatically be adjusted to match the variable data update
frequency.

12

Time: – Displays the current time in the files. Since there are typically many files this
represents the latest time for a given time step.

Go button – Used to position the display at a user defined time within the file if it is in
bounds.

From: – Is either the earliest data point across all data files or a user defined beginning of
an analysis interval.

To: – Is either the latest end data point across all data files or a user defined end of an
analysis interval.

Sliding End check box – Tells OVIS that data is still being written to the file and to keep
checking even though it has reached the end.

Sampling Period: – Eliminates the processing/IO bottleneck in scrolling through data by
allowing the user to sample on the user defined time interval (in seconds?) displayed in the
spinbox. In this case the speed dial defines the time between successive samples.

Play button – Continues to step through the data, from the current time, in a manner
consistent with all other controls.

Stop button – Stops stepping through the data but leaves the display set according to the
data at the current time as defined in the Time box in the upper right hand corner.

To beginning button – Takes the display directly to the data points defined by the time
displayed in the From box in the lower left of the display.

To end button – Takes the display directly to the data points defined by the time displayed
in the To box in the lower left of the display.

4.2 Cluster Definition and Representation

The first thing OVIS needs is a spatially meaningful description of the cluster it is to rep-
resent. This must be defined in an xml file whose name is <descriptive name>.geom.xml.
A template of this file is located in the ovis-1.x/src/templates directory. Once this has been
written OVIS must be made aware of it by selecting the directory containing it and pos-
sibly other geometry definitions via the Edit−− >Preferences−− >[General Tab]Default
Geometry Location. All names for which there exists an xml file in the Default Geometry
Location will be available in the System combo box in the upper left of the display. Choose
the system for which you will be viewing data by choosing its descriptive name from the
System selector in the upper left of the display. Note that currently it is up to the user to
ensure that the data being loaded corresponds to the system selected as there is no checking
to make sure there is a match between the number of data files and the number of nodes
defined in a geometry file.

13

4.3 Getting Data Into the Display

The next thing needed is a data source to apply to the chosen cluster description. If there
isn’t any data saved or being saved for the system in the OVIS format (see section on Data
Collection) you must first perform this step. To access a dataset currently being written
(active) or an old dataset that has been closed, choose File−− >Open Dataset from the
pull down menu in the upper left of the display to launch a file browser with which you can
locate and specify the appropriate dataset. Note that you are selecting a directory containing
data files, not the files themselves. If you are choosing an active data set and want to watch
real time updates you will need to check the Sliding End box located in the lower left of
the display after To. Once a dataset has been chosen it will be automatically loaded. If a
directory is chosen that contains no data files a pop up dialog box will appear informing
user of the error and his choices. The beginning and end times of the file will be displayed
as From and To in the lower left section of the display. These fields are editable so that
the user can choose to view/analyze a subset of the dataset. Note that when the Sliding
End box is checked the end time is grayed out and cannot be edited. If the user wishes to
change the end of an analysis interval within an active file the Sliding End box will need to
be unchecked.

4.4 The OVIS Display

The OVIS display depicts spatially correct scaling with respect to the vertical dimension.
In the horizontal dimension the width is currently a function of how many racks (whether
populated with compute equipment or not) are to be displayed in a plane (we recommend
<= 20). The color displayed represents the value of the variable chosen in the Variable
combo box (upper left of the display), the value-to-color mapping chosen for that variable
in the Variable Scales tab in the Edit−− >Preferences pull down menu (upper left of the
display) and the status of the View−− >Use Gradient Colormap checkbox. The default
numeric values for all variables correspond to currently reasonable Celsius temperature
values for a CPU and may or may not be reasonable for any particular variable on your
system so should be reviewed in light of actual data. In order to quickly discover reasonable
value limits for a given variable, use the statistics tool (Tools−−>Statistics). After making
the variable in question active by selecting it in the Variable combo box, set a time interval
and node, rack, or system and click OK. When data is returned you will have the minimum
and maximum values for the data (over the interval). Note that this can take quite some
time if the time interval is long and you are looking at the whole system. Though there
is no guarantee that these are the absolute bounds, it is a good place to start. See the
Customizing Color Scales subsection for details on adjusting the color map to suit your
needs and Statistics tool subsection for more detail on proper operation of this tool.

This organizational and display technique allows for intuitive visualization of patterns
across a large number of nodes simultaneously. It is expected that given a homogeneous
environment and workload the nodes will exhibit similar behavior with respect to most vari-

14

ables. Hence, given a similar workload across a set of nodes, the expectation is a largely
homogeneous (in color) display across those nodes. Deviation from this and especially
patterns indicate lack of such homogeneity and possible problems. Note that one can force
the display to look homogeneous even in the presence of grossly varying data by improper
setting of the color maps so care should be taken to insure that these are set correctly for
your data.

4.5 Customizing Color Scales

In order to customize the value-to-color mappings choose the Variable Scales tab from the
Edit−− >Preferences pull down menu (upper left). In this tab there are five value fields
associated with five color fields. This menu allows the user to choose value to color map-
pings that make sense for him in the context of the variable being viewed. There are five
value spinboxes associated with five color boxes. Left clicking on a color box gives access
to a color palette from which to choose a color to associate with the corresponding value
spinbox. Linear interpolation is used to generate colors for values between two consecutive
spinboxes. The default colors are Blue and Red for the extremes with magenta, green and
yellow as intermediates. The default numeric values for all variables correspond to cur-
rently reasonable Celsius temperature values for a CPU and may or may not be reasonable
for any other variable so should be reviewed in light of actual data. There is a persistent
popup, that stays in the foreground, of the color map for the current working variable. This
value-to-color map applies to the working variable for all nodes within the cluster so that a
visual comparison can be made based on color alone. These fields can be used in several
ways which are described in order of simplest to most complex:

1)You can chose a smooth gradient between two extremes of a variable by setting a lower
bound and an associated color in one of the end fields and an upper bound and associated
color in the adjacent fields and checking the gradient box in the main display upper center.

2)If the desire is to give finer granularity to the values in a certain region you can define
up to four such regions. The color gradient will always be from a left value/color pair to
the right adjacent value/color pair. The leftmost color refers to the leftmost value field and
values to the left of it (lower numerical values) and similarly the rightmost color refers to
the rightmost value field and values further to the right (higher numerical values). Colors in
this case scale smoothly in hue from one color field to the adjacent color field as the value
of the variable moves between the associated value fields.

3)Another option is to bin values in order to better visualize where values lie on a much
coarser scale. Currently OVIS allows definitions of five color bins. Each bin contains the
values starting from and including that in a variable box and up to (but not including) the
value in the variable box to the right. A bin’s color is associated with the range that begins
with the value of the variable field above it. There are two special cases: 1) The leftmost
bin additionally contains all values to the left of (less than) it. 2) The rightmost bin begins
with the value of its associated variable field and contains all values to the right of (greater

15

than) it.

4.6 Use Of Data Interpolation

Data interpolation was implemented in OVIS because data returned for a given request
over a large number of nodes will have some time skew (order of a few seconds) and hence
will not be displayed simultaneously even though they represent the same region in time.
The way it is implemented is that, independent of the time between successive timesteps,
data displayed for a node:variable pair will be retained until and displayed until updated
with new data. Though this makes for a nice continuous display and is valid for some
types of data over some time periods, it must be used cautiously with understanding of
the implications. For instance due to the thermal mass, the temperature of a CPU will
not change appreciably over a few second interval. Thus if the data collection rate is one
sample per second it may make sense to carry a missing point forward a time step or two
whereas for a data collection rate of one sample per minute it wouldn’t. For variables
such as network transmits and receives there is no inertia but due to the nature of data
gathering and applications sending in bursts it may still make sense if the interval is short
enough. Use with caution as the current implementation does not take into account the
age of the last point but just blindly carries it forward forever if this box is checked. Future
implementations will use a fuzzy time and aging mechanism whose attributes the user will
be able to adjust to suit his knowledge of the data.

5 Tools

The tools currently available in OVIS are described below.

5.1 Statistics

This tool allows the user to choose a single node, a rack of nodes or all nodes in the system
and a time period over which to analyse a specified variable with respect to the following
basic statistics: sample size, minimum, maximum, mean, median, mode, unbiased vari-
ance, sample variance, sample skewness and sample kurtosis. This tool gives the user
insight not only into a particular variable’s behavior with respect to a given node but can
also yeild insight about phenomena affecting a variable with respect to spatial and temporal
variation.

Note that node and rack IDs must be entered as they appear in the XML geometry file (and
therefore also in the User Interface). For example, if a cluster has nodes labeled from cn-1
through cn-100, then, in order for node 10, the user must enter cn-10 (and not only 10).

16

Blank spaces must be entered as well, when present in the ID. Note also that a common
mistake is related to the case (e.g., rack instead of Rack).

5.2 Correlation

This tool allows the user to choose a single node, a rack of nodes or all nodes in the system
and a time period over which to analyse two specified variables for linear dependencies.
The following information is calculated and displayed: Variables being evaluated, sample
size, means of the two variables, sample variance of each variable, covariance, variable 2
on 1 regression slope, variable 2 on 1 regression intersect, variable 1 on 2 regression slope,
variable 1 on 2 regression intersect and the linear correlation coefficient. This tool can give
the user insight into the linear dependencies between sets of variables which in turn may
allow inference about cause and effect relationships within a cluster.

The same syntactic rules as for the Statistics tool apply.

6 Calibration Code

A calibration code is supplied as a convenience for the user but is not necessary to the
operation of OVIS. The dialautil.c code is used to impart a known CPU Utilization to the
nodes. This value is specified by the user on the command line (See the code Usage). This
code can then be used to calibrate things such as the Temperature-change vs change-in-
utilization values. For instance, on our cluster Shasta, we find this is generally a constant,
allowing one to factor out the CPU Utilization when considering the temperature profile,
thus allowing comparison across the cluster, even if the cluster is running different jobs.

As an example, one can simultaneously run:
./util/dial/dialautil 30 120 temp (starts the code, writes to dir ./temp)
./util/gatherdata temp (gathers data)
tail -f ./temp/proc*.out (you can see the CPU util in the output).

7 Cluster Analysis

7.1 Viewing Raw Data

Viewing raw data in gradient mode over many nodes layed out in a spatially correct fashion
can yeild insight about the environment where ”environment” here refers to any external
influence(s) on the nodes. It can also assist in the detection of gross outliers but these

17

are covered in the next section. In this section we will address the detection of thermal,
radiation, and network environmental factors though there are many more.

7.1.1 Thermal Influence

This is perhaps the most obvious. Color gradients on a display of the raw temperature val-
ues for any node parameter while nodes within the display area are performing similar tasks
are likely due to spatial temperature gradients in the external environment. The strength of
such gradients will vary depending on the parameter being viewed and the relative influ-
ence of external temperature on that parameter. Thus one would expect a linear relationship
between intake temperature and any other temperature variable within the node. The rela-
tionship between intake temperature and memory error rates may be non-linear and may
not even be apparent over the normal spatial temperature distribution.

7.1.2 Radiation Influence

Finding color gradients accross nodes when viewing memory error related parameters can
be indicative of thermal gradients as mentioned above but also can be, among other things,
due to cosmic radiation gradients. This would be expected in high altitude installations
such as Los Almos and Albuquerque where a cluster might have large enough extent that
some nodes sit in areas of higher shielding than others. Of course to see these effects the
display must simultaneously display all of the nodes over which the gradient occurs.

7.1.3 Network Influence

Depending on the technologies of the networking equipment being employed in a particular
cluster, color gradients may occur over adjacent nodes network parameter values when the
connections to the networking gear are made to adjacent network gear ports or bundles of
such connections take different paths to the network gear. These gradients could be due to
problems in a particular group of interfaces or thermal gradinets accross the blades of such
gear.

7.2 Viewing Probabalistic Outliers

The Statistics tool not only allows intelligent choice of bounds for a given parameter but
also gives information about the distribution of values for a particular parameter over a
set of nodes. This information allows the user to create color bins defined by the relative
probability of the values within that bin occuring. For instance: The statistics tool for a
specified interval of time over a statistically meaningful number of nodes running with the

18

same operational parameters says that the values for a given parameter are normally dis-
tributed with a mean of µ and a standard deviation of σ. Binning colors such that values
greater than (µ + 2 ∗σ) are red and values less than (µ−2 ∗σ) are blue allows the user to
detect at a glance, nodes for which the value of this parameter has less than five percent
probability. The spatial distribution of such nodes gives information as to the underlying
cause. A sparse seamingly random distribution would probably say that the nodes should
be looked at while a clustered distribution probably points to environmental factors as de-
scribed above.

8 OVIS Tutorial

The following slides are a tutorial guide to setting up OVIS. The demo files included with
the source tarball are used.

19

OVIS Tutorial

● Note: This tutorial assumes you have properly
installed QT4 and ovis-0.1 according to the
installation instructions in the Users Guide.

Starting OVIS
● cd <install_path>/ovis-0.1/src
● ./Ovis --> Starts the OVIS GUI shown below

– The configuration shown is for demonstration

OVIS Configuration
Will be covered over the next 11 slides

● Before using OVIS to visualize data you must:
– Specify a geometry file which describes the

physical layout of the cluster
– Specify a dataset, that you want to view,

corresponding to the geometry selected
● To make the visualization meaningful you

must:
– Define color maps for the variables in accordance

with the range of values in the dataset

Specifying Geometry File
● From the upper left pull down menu select:

– Edit-->Preferences
– Type the path in the “ Default Geometry Location”

dialog box or click on ... to browse the filesystem
– Click “ Open”

Specifying Geometry File Cont.
● If no valid geometry file exists in the location given

● And the resulting display looks like this

System Display With Geometry File
But Without Data

Select Dataset
● File-->Open Dataset

● Browse for data directory and click on Open
– Note:Only click “ Open” when you have selected the

directory containing the data files. Do NOT use
“ Open” as a navigation tool.

Select Dataset Cont.
● You are opening a DIRECTORY not a file. If

preferences specifies the directory containing the
actual data files or you double click on this directory
when specifying the dataset, “ Open” will do nothing
and you will get:

● In this case go up one level then select the directory
containing these files and click “ Open”

OVIS with demo Geometry file and
demo_data Dataset loaded

● Note that not all nodes have data on the first
timestep as displayed by gray boxes

Define meaningful color maps
● Determine reasonable data value limits

– First select a variable from the “ Variable” combo box in the
upper left of the GUI

– Next start the statistics tool: Tools-->Statistics

Configure statistics tool
● The fastest analysis will be on a single node and if

data has been taken over a period sufficiently long
for a node to have gone through periods of idle and
high CPU utilization it will get you in the ballpark.

Configure Color Maps

● After gathering the minimum and maximum
values for the variables of interest select:
– Edit-->Preferences (this will pop up a dialog box)

● Click on the “ Variable Scales” tab
● From here you can select any variable available

in the dataset and distribute the spectrum over
the value range of the variable however you
see fit. See next slide for an example using the
statistics data from the previous slide.

Color Map for variable CPU1
● Note that this scale has been set from 25 to 50

to reflect the range for on node's statistics over
some period. This may need to be adjusted
slightly if a lot of the nodes spend significant
time colored on either extreme.

OVIS with demo Geometry file,
demo_data Dataset loaded and color

map defined for variable “ CPU1”

At this point OVIS is configured for
meaningful display of this dataset on

this cluster specification
● The following slides will explain the controls

functionality and use as well as how to use this
tool to:
– Evaluate the cluster environment
– Evaluate cluster configuration
– Use the statistics tool to do meaningful analysis of

system parameters

OVIS GUI Controls

● There are four basic control types
– DVD like “ playing” controls allow you to step

through a dataset like you would a movie
– Time Location controls allow fine grained control on

region and position
– Sampling and Speed controls allow definition of

how often, in time, to sample and at what rate to
display these samples

– View controls affect how and what data are
displayed

OVIS GUI Controls Continued

● Playing controls allow you to “ play” through a
dataset like you would a movie

● “ Play” -- Right pointing arrow starts playing from “ Time”
towards “ To” in accordance with “ Speed” and “ Sampling
Period” rules

● “ Stop” -- Square stops playing but remains at current
“ Time”

● “ Rewind” -- Left pointing arrow with verticle line rewinds
to “ From” time

● “ Forward” -- Right pointing arrow with verticle line
forwards to “ To” time

OVIS GUI Controls Continued
● Time location

● “ From” bounds time on the left and is located in the lower
left of the display

– Set by default to earliest time in dataset
– Can be set by the user anywhere between the default and the

time in the “ To” box
● This allows the user to effectively zoom in on a time region

● “ To” bounds time on the right and is located to the right of
the From box

– Set by default to the latest time in the dataset
– Can be set by the user anywhere between the default and the

time in the “ From” box
● This allows the user to effectively zoom in on a time region

OVIS GUI Controls Continued
● Time location continued

● Time points to the time of the data currently being
displayed

– Set by default to earliest time but steps through the dataset when
“ Playing” according to rules established by the “ Speed” and
“ Sampling Period” controls defined below

– Can be set by the user to any time between and including “ From”
and “ To”

● When user defined, “ Go” causes the seek
– Moves forward in accordance with “ Speed” and “ Sampling

Period” rules when “ Playing”
– Remains at current time when “ Stop” is depressed
– Moves to “ From” time when “ Rewind” is depressed
– Moves to “ To” when “ Forward” is depressed

OVIS GUI Controls Continued
● Sampling and Speed controls

● “ Sampling Period” is a spinbox located in the lower right
of the display. The number displayed in this box defines
the subsampling interval, in seconds, for display of data
from a dataset. Setting an interval shorter than the
interval between successive datapoints yeilds no data for
the timesteps between even though the display will
update for every such timestep it would be empty for the
times between actual data unless interpolation was
turned on

● “ Speed” is a radio dial located in the upper right of the
display. This dial affects the time between successive
updates of the display according to the sampling period
chosen. Clockwise is faster and actual maximum will be
determined by processor and computational load.

OVIS GUI Controls Continued

● View controls affect how and what data are
displayed

● Bin or gradient according to colormap
– If the “ Use Gradient Colormap” box is checked (default) the color

displayed is calculated by interpolating between the colors the
variable value falls between

– See the “ Customizing Color Scales” section of the Operation
Guide for more comprehensive description of these options

● Show missing data or use interpolation to hide the gaps
– If the “ Interpolate Missing Data” box is checked (default) the

previous data will be carried over if there is no data for a node for
the current timestep. See the “ Use of Interpolation” section of the
Operation Guide for discussion on where and when this should
be used.

Evaluation of Cluster Environment
● Find a place in time where the operating

conditions are stable and similar across the
system.
– Since the demo dataset was taken using our calibration

code running on all nodes in the system we step
through the data and note times when the system looks
stable at idle and at high CPU utilization (apparent from
reddish colored nodes in this example)

– The current version of OVIS does not include a
mechanism for normalizing one variable to some
function of others.

All Nodes Idle
● Note the thermal gradient with vertical dependency

– Looks here like this cluster needs more airflow

All Nodes 100% Utilization
● Note the thermal gradient with vertical dependency

– Cluster needs more air volume but lower air velocity as the current high
velocity cooling air is causing hot exhaust to be sucked under racks and into
bottom nodes

Evaluation of Cluster Configuration
● Using the same method to find regions of operational

stability we look for variation not explained by the relatively
smooth gradients we would expect from environmental
phenomena.

– In the display showing the cluster at idle there is nothing
remarkable.

– In the display showing the cluster at 100% utilization the
nodes just above the empty space in the middle run a
little hotter than the ones before the space and the ones
above them. Since this phenomenon spans all of the
racks it is worth investigating what role these spaces
might play.

Cluster Configuration Continued
● In the case of this particular cluster it turned out that these

spaces had no panels in them and hot exhaust air was
being recirculated. This particular data was taken after
blocking this space in racks 1, 2 and 3 with cardboard
which still allowed some leakage. In the case of rack 5,
though the temperature profile looks the same a look at
the fan speed profile (next slide) shows that fan speed of
the node above the space is markedly higher.

– Note: The color maps for the fan speeds was set up in
the same way as those for the CPU temperatures and
ran from 9 to 13 as the nodes selected showed a high
and low of 12.

Fan Speed Profile

	SAND2006-ovis.pdf
	Introduction
	Installation
	Instructions for compiling Qt 4.x.y for Linux
	Setting the environment
	Instructions for compiling Ovis 0.1 on Linux
	OVIS ancillary files

	Data Collection
	Data File Format
	Data Collection

	Operation Guide for Ovis-0.1
	Description of menus and controls
	Cluster Definition and Representation
	Getting Data Into the Display
	The OVIS Display
	Customizing Color Scales
	Use Of Data Interpolation

	Tools
	Statistics
	Correlation

	Calibration Code
	Cluster Analysis
	Viewing Raw Data
	Viewing Probabalistic Outliers

	OVIS Tutorial

